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CONVERGENCE OF MCVAL SERIES IN A PLATE

STRUCK BY A SHOCK WAVE

INTRODUCTI ON

This report continues a sequence of reports on numerical investigations
of simple cases in the dynamic responses of structures to transient
loading.. The objective of the investigations has been to develop insight
into the behavior of structures under dynamic loadings by considering cases
which are simple enough to be exhaustively analyzed but which contain- the
essential features of some complex problem which is of real interest.

The problem of present concern is the effect of underwater-explosion
attacks on appendages or external structures of combat submarines. An
underwater explosion produces a pulse of pressure which may damage the sail,
rudder, diving plane, or other appendage of a submarine directly as it
sweeps around it or through it, or which may damage it as a result of shock
motions which it produces in the section of the hull to which the appendage
is attached. A prediction of the. peak stress produced in the structure of

*an appendage by a given pressure pulse or base motion would seem to be a
useful step in assessing the danger that an appendage might be distorted
enough to become inoperable, or be blown away entirely, by an underwater-

• explosion attack. Such stresses can be calculated by modeling the structure
as an array of finite elements, applying loads, and calculating responses
directly on a high-speed computer.

Mtnimum essential features of the problem are seen to be a
representation of the structure, a representation of the surrounding water
as it interacts with the structure, and provisions for loading by means of a
pressure pulse or a base motion. The minimum features were incorporated
here by considering a thin rectangular plate cantilevered from a moving base
and surrounded by an acoustic fluid. The complexity of a usual structural
model was simulated by supposing that the plate could respond in multiple
modes of plane-strain bending and the effects of the fluid were simulated by
simple plane-wave interactions. More-general methods of modeling structures
and representing fluid-structure interactions can. be considered as
elaborations of the simple methods described here.

Results shown here indicate that acoustic damping, as provided by the
surrounding fluid, seem to destablilize the calculations by causing
stresses and strains to increase with increasing frequency or increasingly-
elaborate finite-element representations of the structure. It appears to be
necessary to carry the structural representation up to the range of detail
where the response is no longer controlled by damping in order to obtain
valid estimates of stress or strain in the structure.

Manuwript approved June 8, 1983.
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BACKGROUND

Some previous numerical studies of simple dynamic systems are described
here as examples of Hamming's motto, "The purpose of computing is insight,
not numbers." (11

Studies with Application to Shipboard Shock

Seven simple systems involving springs, rigid masses, and dynamic
forces are sketched in Figure 1. Each represents some basic feature of the
dynamic response of a complex structure to shock, with details stripped
away. Closed-form solutions or exhaustive numerical solutions provided
insight into the response of shipboard equipment to impact or shock from anunderwater explosion.

For example, in Figure 1:

(a) A closed-form solution for the simple two-mass system illustrated
the shock-spectrum dip and showed the importance of the effective mass of a
normal mode of vibration on the response of equipment to shock delivered
through ship's structure [2].

(b) Simulation of the string of five masses on an analog computer
showed that the common method of determining frequencies of equipment by
applying vibratory forces to the equipment itself gave incorrect results.
Frequencies could be determined, however, if forces were applied to the
supporting structure rather than to the equipment [31.

(c) Design charts for the three-mass system showed that under most
conditions the peak responses of two items of equipment, or the responses of
two normal modes of the same item, were nearly independent even though shock
was delivered through a shared base. Exceptional cases (close tuning of
systems having greatly-different masses) were delineated by the charts (41.

(d) The effect of simulating internal water in a structural model by
filling spaces with an array of solid finite elements was investigated by
calculating the passage of a shock wave through such an array placed between
a pair of parallel plates [51.

(e) A mass cantilevered from a rigid base was used to investigate the
effect of base rotation on the shock response of an item of equipment having
a high center of gravity.

(f) The difference between the effects of yielding of the ship's
structure and yielding of equipment on measurements made at the base of the
equipment during underwater-explosion tests was investigated by nonlinear
numerical calculations made on a three-mass model of the process f61.

(g) Design charts for a three-legged foundation intended to resist
shock from two different directions were used to compare the efficiency and
effectiveness of several proposed methods of designing lightweight
foundations.

2

- '''.,.''',.'.3 ""."- .'. " . . ".". . . . •.. . ...-. . i. i-.. .li,.'."'"... _'., ..
, - , . ........... ,Z..z. ... ,...... d 

-
.J ...



4 D.

(a)

II "tIdEI

.9,.j
t

(fe)

(g)

Figure 1. Simple models using springs and masses which have provided
important insights for shock responses of shipboard equipment.
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Response of a Square Plate to a Step Pressure

The present report builds on some results reported by Fagel in 1972
[7]. Fagel considered the case of a thin, rectangular plate with simply-
supported edges subjected to a step of pressure applied to one side. He
calculated time-history acceleration, velocity, and displacement at the
center of the plate by superposing responses in 225 normal modes of
vibration.

Fagel found that the partial modal sums for velocity and displacement
converged rapidly to valid estimates of the time-history responses but that
the acceleration was less cooperative. Initial acceleration for the
fundamental mode was 1.62 times the ratio of pressure to mass per area for
the plate. Subsequent modes had smaller initial accelerations which
alternated in sign to produce a sequence whose sum converged to the proper

ratio of 1.00.

In subsequent time-history superpositions of the undamped responses,
however, the different frequencies of the modes caused the accelerations to
combine with constantly-changing phases, leading to a divergent series for
the upper bound (sum of absolute values) of the response. Nevertheless,
Fagel found that the largest peak acceleration from his time-history
superposition leveled off at a ratio of about 4 by the time he had included
64 symetric modes of the plate.

A small amount of modal damping greatly decreased the number of modes
needed to obtain a valid estimate of the peak acceleration at the center of
the plate. The peak acceleration using nine modes was indistinguishable
from the response using 225 modes if damping were set at 3 percent of
critical damping for each mode, and was 15 percent lower than the 225-mode
response if the damping were 1 percent. Fagel recommended that nine modes
should, for practical purposes, usually be adequate for dynamic response
calculations involving plates subjected to impulsive loads.

In a favorable review of Fagel's paper, [81, Rartman pointed out that
the detailed calculations showed that the usual engineering approximation of
applying a factor of 1.5 to the ratio of pressure to mass per area to obtain
an estimate of peak acceleration of the plate was likely to be inadequate.

Plates subjected to shock waves while immersed in an acoustic fluid
incur the same step of pressure as contained in Fagel's calculation, but are
also damped by the acoustic resistance of the surrounding fluid. An
elaboration of Fagel's calculation to include acoustic damping, a decaying
shock wave, motions of supports, and a calculation of bending strain in the
plate was considered worthwhile to see if his criterion for the number of
modes to be used, or a similar one, could be applied to that case.

4
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THEORY

The usual equations for a thin beam are applied to plane-strain bending
of a thin plate immersed in an acoustic fluid. Plane-wave interactions with

the fluid are taken for simplicity.

Equation of Motion

The differential equation

(Ely")" . 2pW - 2pcW(y + b) - ,(y+ b) (1)

represents the deflection y(xt) of a thin, rectangular plate at time t and
distance x from one end of the plate. The deflection is measured relative
to a moving base whose position is given by b(t). Conditions are taken as
uniform across the width, W, of the plate so that it bends as a beam along
its length only. Both the bending stiffness El and the mass per length m
can vary along the length of the plate. The nrimes represent partial
derivatives with respect to length x and the dots partial derivatives with
respect to time t.

The plate is immersed in an acoustic fluid having plane-wave
impedance Pc. A plane-wave pulse of pressure p(t) is incident on one side of
the plate and reflects as a plane wave, doubling the pressure applied to the
plate and producing a force 2pW per length. It is also assumed that the
plate is damped by plane waves emitted from both sides of the plate in
accordance with the velocity of each area of the plate relative to the
fluid. The model is a simple one chosen for illustrative purposes.
Complicating influences such as curling of the plate, divergent waves in the
fluid, and edge effects have been ignored.

5
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Separation of Variables

Consider the homogeneous form of Equation 1 (no incident pressure and
no base motion) and look for a solution in the form

y(x,t) - Y(x) z(t), (2)

that is, one separable into the product of a function of position and a
function of time. Substitute and write the equation as

(3)
(El Y-)" - _2PcWzmY z mz

The left side of Equation 3 is a function of x and the right side is a
function of t except for the mass per length m(x). In order to separate
variables cleanly, it is necessary to require that the mass per length be
constant. The right side is then independent of position on the plate, the
left side is independent of time, and the only way the sides can be equal is
if they are both equal to the same constant value. Write the constant asw 2 .

The left side of Equation 3 becomes

a. (El Y")" - mw2 Y, (4)

which is recognized as the eigenvalue equation for free vibration of a
beam. If the bending stiffness El is constant along the length, Equation 4
has the four solutions cos(ax), sin(ax), cosh(ax), and sinh(ax), with

a4 mw2/(EI). (5)

Combining the four solutions and choosing a value of a to meet four
prescribed boundary conditions for a particular beam Ts a matter treated in
standard engineering texts. As shown there, a set of different solutions
Yn(x) exists, each with its own value of w n . Moreover, the solutions are
orthogonal in the sense that

f0L Yk a dx - 0 (6)

whenever Yk(x) and Yn(x) are solutions which correspond to different values
of 2 2

Sandw

The value of m is shown inside the integral sign in Equation 6 because
the equation applies even if m(x) is a function of position. It was only
because of the second term on the right side of Equation 3 that it was
necessary to require that the mass per length be independent of position
along the beam.

: ; -, . .,- .. ...... , .. , ,,, . ...... ., .. , .; • . . ...- .; - : -;-: , ~ ~i: ; 4~ ~ ~ . .i:: :- :i ;: ;: : ! i-!:i i :ii i!:



I#KN7....-' --.. C -:.. . -- o . . ... ,. . - . -

Equation 4 shows that mYn is proportional to (EI Y")"* The
orthogonality relation of Equation 6 thus implies the additional relation

jLY.(EI Y-)- dx - 0. (7)

The right side of Equation 3, meanwhile, corresponds to the damped
oscillator

4 z" + 2(PcW/m) ; + w2 z _ o. (8)

"* Equations 4, 6, and 7 apply to a nonuniform plate in which stiffness El
and mass per length m may both vary along the length of the plate.
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Solution by Damped Normal Mbdes

A solution to Equation 1 which includes the incident pressure and the
base motion can be obtained by writing

y(x,t) - Yn(X) zW(t) (9)

and taking advantage of the orthogonality of the thin-beam functions
Yn(x). It is first convenient to normalize the functions by setting

fL Y m Y dx - 1, (10)
0 n n1

where the integral is over the length of the plate. The zeroes of Equations
6 and 7 remain zero regardless of the scale factors or physical dimensions
that are assigned to the functions. Making the integral be unity when the
two functions are the same assigns a convenient scale factor to each
function and gives it dimensions of the inverse square root of mass.

Substitute the sum of Equation 9 for y(x,t) in Equation 1, multiply the
equation by one of the functions, Yk(x), and integrate over the length and
width of the plate. Some of the integrals vanish because of
orthogonality. For the combination with k-n, the normalization produces one
factor of unity and one factor

o (E Y")" dx - (11)
0 n n n

Equation 1 becomes

ZK + 2Pcj z fL Yk Y dz + z (12)

- [2p- 2Pc ] W foL Yk dx f L Y m dx.0 k f 0  Ykdx

Except for the second term, Equation 12 depends only on the function
Y (x) which was used as a multiplier and on the Zk(t) which goes with it.

orthogonality as defined in Equation 6 eliminates cross terms in the
integral of YkmYn but does not generally apply to the integral of YkYn which
appears in the second term. Such coupling is a usual feature for modal
analyses of damped structures. It comes Prom the mathematical theorem that,
while it is usually possible to choose a set of functions to satisfy two
orthogonality relations (such as Equations 6 and 7), it is hardly ever
possible to satisfy three such relations. In the present case, the
functions were chosen to eliminate cross terms in the mass and stiffness
coefficients, leaving the damping in coupled form.

For the special case of a uniform mass per length, however, the factor
m can be taken out of the integral of Equation 6 and the functions are then

.1'
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also orthogonal with respect to the integral of Ykyn. Moreover, the
normalization provides a factor of 1/m so that Equation 12 becomes

Z + 2(PcWm) + Wzk( 13)

- [2pW/m - 2(PcW/m) b - b m "Yk dx.

Equation 13 represents an oscillator with modal damping and can be solved to
show the time-history response Zk(t) of the motion having modeshape Yk(x).
The damping is modal (or classical) for this simplified problem only if the
mass per length of the plate is uniform.

The normalization to unity indicated in Equation 10 is convenient but
not necessary to the development. If the functions are chosen so that the
value of the integral is other than unity, the value can be carried along
with little trouble as an extra factor; its inverse eventually appears as a
factor on the right side of Equations 12 or 13.

Note particularly that the value of the integral of Equation 10 for
unnormalized functions has no physical significance. It is simply a scale

factor resulting from inappropriate normalization, with a value which
depends on the arbitrary scale factors applied to the orthogonal
functions. In some treatments it is incorrectly identified as an "effective
mass".

A proper interpretation of effective modal mass is easily obtained if
Equation 10 is normalazed to a dimensionless unity and the functions Yn(x)
are interpreted as having dimensions of the inverse square root of mass.
The integral of Ykm which appears on the right side of Equations 12 and 13
(commonly called the participation factor) then has dimensions of the square
root of mass, and the square of the participation factor is, indeed, the
effective modal mass which provides a reaction force against the base motion
when Mode k is accelerated.

Cd 9
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Pressure Pulse from a Shock Wave

The incident pressure pulse p(t) was taken as

P - poe (14)

to represent the shock wave from an underwater explosion. At time t-0 the
pressure Jumps abruptly to a peak value of Po and thereafter decays
exponentially with time constant e. Water is customarily treated as an
acoustic medium over the range of pressures of interest to fluid-structure
interactions although nonlinear processes are important to the initial
formation of the shock wave.

Flat-Plate Base Motion

If a plate is not connected to a base and undergoes no bending,
Equation 1 becomes

(15)my " 2pW - 2pcWyo

This equation was used to generate base motions b(t) for some of the

calculations. The presumption was that the plate of interest was mounted to
a larger and heavier plate on which the pressure pulse acted.

If the pressure pulse is a shock wave, the flat plate begins moving
with an abrupt acceleration of 2p0W/m at time zero and reaches a peak
velocity of p(t)/(pc) at time t. A closed-form solution for the motion is
easily obtained.

.14
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Sphere Base Mbtion

The velocity u(t) of a rigid sphere of radius r struck by a plane shock
wave with pressure p(t) in an acoustic fluid of dens'ity p and sound speed c
satisfies the differential equation

Ml" + 2(M*F/2) (c/r)u + 2(M*F/2) (c/r)2u = 3F(c/r) 2p/(pc). (16)

where M is mass of the sphere and

F - (4/3)wr 3p (17)

is the mass of an equal volume of fluid. A closed-form solution is
available [91 for the case in which p(t) is a shock wave.

The reponse of a sphere to a shock wave was used as a base motion for
some of the calculations. As for the case of the flat-plate base motion, it
was assumed that the plate of interest was supported from a heavy sphere
which was subjected to the incident shock wave. The flat-plate motion began
with an abrupt step to peak acceleration, while the onset of acceleration is
more gradual for the sphere.

, 11
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RESULTS

Computer programs were written to find modeshapes and frequencies for
thin cantilevered beams, to calculate time-history responses of the modes to
a shock wave and a variety of base motions, and to superpose bending strains
from various combinations of modes.

Parameters Used in Calculations

For convenience, calculations were done in dimensional form with
dimensions fitted to some available data from small-scale tests [9].
Calculations and data from the tests could then be used directly to assess
the accuracy and realism of some of the intermediate steps in the analysis.

Plates were of steel, 254 me long, 152 -a wide, and either 3.3 or 9.3
m thick, supported from one end as cantilevers. The incident shock wave
had a peak pressure of 6.96 MPa and decayed exponentially from the peak with
a time constant of 0.425 mas. Base motions were taken as produced by the
action of the shock wave on a fla plate or a sphere having a mass of 272
kg, with a surface area of 0.395m for the plate and a radius of 162 u for
the sphere. Some of the calculations used plates or spheres having
different characteristics to explore the effect of variations.

Results are shown as values of bending strain at the surface of the
plate. Stress is strain multiplied by the elastic modulus of 207 GPa which
was used in the calculations.

.12
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Frequencies and Modeshapes

Table 1 lists the first 30 normal-mode frequencies of a steel
cantilever beam 254 mm long and 9.3 sm thick, as determined by direct
fitting of the thin-beam formula

Yn - [cosh(an x) - cos(anx)] - n [sinh(anx) - sin(anX)] (18)

to conditions of a fixed end at x-O and a free end at x-254 mm.
Calculations were done in double precision on the ASC (Advanced Scientific
Computer) at the Naval Research Laboratory. Procedures and notations were
taken from the textbook by Mario Paz [10). It was necessary to discount the
values shown for the first five modes of a cantilever in Table 20.4 of the
textbook, which appeared to be in error.

The column labeled "SIGMA(N)" in Table I is the value of a needed in
Equation 18. The colum "MODE CCNST" is the ratio of the integgal of Yn(x)
to the Integral of Y-(x) over the length of the beam. This is the factor
needed on the right side of Equation 13 because the modeshapes are not
normalized.

Strain at the surface of the beam is given by
e (H/2) Y z (19)

n n

where H is thickness of the beam, Y (x) is the curvature (second derivative)
obtained from the modeshapes above,nand zn(t) is time-history response of
the mode.

13
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TABLE 1 - THIRTY MODES OF A CANTILEVER

M(DE FREQ(HZ) MODE CONST SIGMA(N)

1 0.11960D 03 0.78299D 00 0o.73410D 00
2 0.74951D 03 0.43393D 00 0.10185D 01
3 0.20987D 04 0.25443D 00 0.99922D 00
4 0.41125D 04 0.18191D 00 0.10000D 01
5 0.67983D 04 0.14148D 00 0.10000D 01
6 0.10155D 05 0.11575D 00 0.10000D 01
7 0.14184D 05 0.97941D-01 0.10000D 01
8 0.18884D 05 0.84883D-01 0.10000D 01
9 0.24255D 05 0.74896D-01 0.10000D 01

10 0.30298D 05 0.67013D-01 0.10000D 01
11 0.37013D 05 0.60512D-01 0.10000D 01
12 0.44398D 05 0.67468D-01 0.10000D 01
13 0.52456D 05 0.25465D-01 0.10000D 01
14 0.611841) 05 0.47157D-01 0.10000D 01
15 0.705841) 05 0.43905D-01 0.10000D 01
16 0.80656D 05 0.41072D-01 0.10000D 01
17 0.91399D 05 0.38583D-01 0.10000D 01
18 0.10281D 06 0.36378D-01 0.10000D 01
19 0.11490D 06 0.34412D-01 0.10000D 01
20 0.12766D 06 0.32647D-01 0.10000D 01
21 0.14108D 06 0.31055D-01 0.10000D 01
22 0.15518D 06 0.29610D-01 0.10000D 01
23 0.16996D 06 0.28294D-01 0.10000D 01
24 0.18540D 06 0.27090D-01 0.10000D 01
25 0.20151D 06 0.25984D-01 0.10000D 01
26 0.21830D 06 0 .2 496 5D-01 0.10000D 01
27 0.23576D 06 0.24023D-01 0.10000D 01
28 0.25388D 06 0.23150D-01 0.10000D 01
29 0.27268D 06 0.223381)-01 0.10000D 01
30 0.29216D 06 0.21580D-01 0.10000D 01

144
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Approximate Mbdeshapes

The functions

w N[sin(a x) - cos(a x) + e-anX - ( e1 )n 
e -  - ), (20)

with

an - (n - Y2 )i/L, (21)

provide end conditions

Y(O) - -N (-l)n eanL, (22)

nn
Y O)= N n (-1)"e-anL '  (23)

2 -a L, ( 4
Y(L) N a e-n 

(24)
n

Y '(L) -N a 3  e-anL. (25)

n n

They form an orthogonal set with
~Y m Y dx - - -eanL -2aL

f LY Ydx2( _l)ne -a n-L e -anL a L) (26)0 n

if N is chosen to satisfy

N L i (27)

They also provide

. f Y Y n dx- 2/(Na aL) -[n I( -- e -nL/,(N a .Q. (28)

The factors e-n which appear in the preceding equations decrease
rapidly with increasing n and are smaller than 0.00002 for n-4 or larger.
If the exponential terms are neglected in Equations 22 through 28, the
functions can be used as a set of orthonormal modes for a thin beam which
satisfy the end conditions for a cantilever. They are, in fact, excellent
approximations from the fourth mode onward. The important and convenient

15
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features of the approximations are the closed-form representations for the
participation factor

(29)

and the frequency

A, - (EI/m) /2 [(n -1/2 )w] 2/L 2  (30)
n

The participation factor for the fourth mode from Equation 29 is
0.18189, compared to the value of 0.18191 as the mode constant for the exact
solution listed in Table 1. Differences are smaller for higher modes.

16



Initial Acceleration

nn:"x With initial conditions z (0) -z (0) - 0, Equation 13 shows an

initial acceleration of

Zn (0) - ;'(O) m fSO Y dx, (31)

where

O0 2pW/m - 2(PcW/m) b - b (32)

represents the combined inputs from the incident pressure and the base
notion.

The initial acceleration at any point on the beam is

;(x,O) - g (0) 1 Yn(x) m Y dx. (33)

If the approximate mode functions are used, the modeshape at the tip (for
example) is

Y n(L) - -2 N (_l)n (34)

and the acceleration there is given by
y (L,O) - g'(0) 1 -4 (_f)n/fn - 1/ 2 NT].

The sum in Equation 35 converges to a value of 2, but half of that
value comes from differences of 0.98050, 0.01903, 0.00044, and 0.00003
between the approximations of Equations 29 and 34 and the exact solution
from fitting Equation 18 for the first four terms in the series.

Convergence of the series for the first 30 modes is illustrated in
Table 2. The convergence is slow - seven modes are needed to come within 10
percent of the correct factor of unity, thirteen modes for 5-percent
accuracy, and 32 modes for 2-percent accuracy.

4-1
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TABLE 2 - CONVERGENCE OF MHDAL SERIES

FCR A THIN CANTILEVERED BEAM

Mode TLp Acceleration Upper Bounds for Light Damping
Num- Factor Sum Acceleration Velocity Deflection Strain
ber at Tip at Tip at Tip at Base

1 1.566 a 1.566 1.566 0.445 0.1267 0.445
2 -0.868 a 0.698 2.434 0.485 0.1285 0.485
3 0.509 b 1.207 2.943 0.493 0.1286 0.493
4 -0.364 0.843 3.307 0.496 c 0.496
5 0.283 1.126 3.536 0.498 0.498
6 -0.231 0.895 3.767 0.498 0.498
7 0.196 1.090 3.963 0.499 0.499
8 -0.170 0.921 4.133 0.499 0.499
9 0.150 1.071 4.283 0.499 0.499

10 -0.134 0.936 4.417 0.499 0.499
11 0.121 1.058 4.538 0.500 0.500
12 -0.111 0.947 4.649 c c
13 0.102 1.049 4.751
14 -0.094 0.955 4.845
15 0.088 1.042 4.933
16 -0.082 0.960 5.015
17 0.077 1.037 5.092
18 -0.073 0.965 5.165
19 0.069 1.033 5.234
20 -0.065 0.968 5.299
21 0.062 1.030 5.361
22 -0.059 0.971 5.420
23 0.057 1.028 5.477
24 -0.054 0.973 5.531
25 0.052 1.025 5.583
26 -0.050 0.976 5.633
27 0.048 1.024 5.681
28 -0.046 0.977 5.727
29 0.045 1.022 5.772
30 -0.043 0.980 5.815

a - Exact solutions used for Modes 1 and 2.
b - Approximation (see text) agrees with exact solution through all

significant figures shown for Modes 3 and subsequent.
c - No subsequent change to accuracy shown.

18
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Peak Pesponses of Heavily-Damped Modes

A,peak (maximm or minimum) velocity which occurs at
time t corresponds to a vanishing acceleration,

z (t n ) - 0 (36)

so that Equation 13 becomes

2 z (t f L2(pcW/m) zn (tn) + n nn g ) Ydx (37)

If t~e damping rate PcW/m is large compared to the frequency w, the term
in w can be neglected to show that the peak velocity is proportional to the
participation factor.

If Equation 13 is integrated once, peak deflections occur when

z (t*)- 0 (38)
n n

and, for heavy damping, are given approximately by

Z (tn) - [a/(2pcW)J g(t") m f LY dx. (39)

The plane-wave damping rate is the same for each mode. The peak
velocities for all of the damping-controlled modes thus occur simultaneously
at times tn' - t', and the peak displacements all occur at tn" = t".
Determining the peak values by superposing the peaks from each mode leads to
a sum which converges in the same slow fashion as the sum from the initial
acceleration as shown in Table 2.

Curvature of the approximate modeshape at the base (for example) of the
cantilever is

Y 2
Y(0) - 2 N a (40)
n n

and the peak strain there is given by

C(t") - (H/2) rm/(2pcW)] g(t") . 4 (n - 1/2 )w. (41)

The sum of Equation 41 diverges by showing an accumulation of larger and
larger values of strain from successive modes.

The oscillator of Equation 13 is overdamped whenever pcW/m is larger
than w . For a steel plate 9.3 n thick immersed in sea water, pcW/m has the
value 21,790 radians per second, so that modes having frequencies up to 3468
Hz will respond as overdamped oscillators. Modes 1, 2, and 3, as listed in
Table 1 with frequencies 120, 750, and 2099 Hz, are overdamped for this
plate. A plate with thickness 3.3 mm has damping rate 61,347 rad/s, with
overdamped modes up to 9764 Rz. This range covers the first six modes for
the thinner plate.
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Upper Bounds for Peak Responses of Lightly-Damped Modes

If the input g (t) includes a sudden change at time zero (as from the
step pressure at the leading edge of a shock wave, for example), the
lightly-damped (high-frequency) modes will respond to the step with
oscillations at nearly their undamped frequencies and will reach peak values
of velocity, acceleration, and deflection at about one-quarter, one-half,
and one period after the step. The peaks recur at half-period intervals,
decreasing in magnitude as a result of the light damping. An upper-bound to
the time-history response from a superposition of modal responses is given
by the sum of the absolute values of the peaks for the modes on the
supposition that it is possible (although improbable) that all of the peak
values might occur in the same direction at some time before their
amplitudes had been appreciably reduced by the damping.

A step input which produces an initial acceleration z_(0) causes
lightly-damped modes to begin .ibratiig with initial amplifudes
of z (0)/w for velocity and z (0)/w for displacement. A sum over

nn n
absolute values, using the approximate modeshapes, gives upper-bounds

y (L,t) < g(0) . 4/[(n -1/ 2 )wI , (42)

(L,t) < '(0) L2 [m/I)I 12 1. 4/ [(n - Y2 )w ] , (43)

y (L,t) < g*(0) L4 [m/EI)] . 4/[(n -Y2 )I, (44)

for acceleration, velocity, and deflection at the tip, and

.4(Ot) < j*(O) (H/2) L2 fm/(El I 4/f(n-1/2 1w]3 (45)

for strain at the base. The oscillations represent motions relative to the
base of the cantilever and take place about an equilibrium deformation
established by the net pressure on the plate and the acceleration of its
base.

Values of the partial sums from Equations 42 through 45 are listed in

Table 2 for the first 30 modes of the beam. The upper-bound for the
acceleration at the tip increases steadily, but at a decreasing rate, as
additional modes are added to the sum. If the sum were terminated after the
30 modes shown, the smallest peak acceleration in the next block of 30 modes
(from n-31 to n-60) block would have a factor 4/(59.5 it) and the sum of the
30 terms in the block would be larger than 3014/(60 w)] - 0.637. The sum
ought to be extended to n-60 to include this significant contribution. But
the sum would still not be complete, since extending it to n-120 would
provide another block of 60 terms accumulating to more than 0.637, and so
on.

20

I -:: , . : : ' : : . - : :: ..... :# :i' :$ .. : -.. . .,: i . ?i / :~ :?.-:. :i -i - . ..



The influence of the frequency makes the partial sums for velocity,
deflection, and strain converge promptly. The first two modes provide a
peak strain which is a 3 percent low; the first three modes account for 99
percent of the upper-bound sum of the strains over all the modes. The first
mode alone accounts for 99 percent of the upper-bound on the deflection at
the tip.

The approximate calculations described here indicate that the peak
strains in the beam, calculated and superposed mode-by-mode, are likely to
begin as a divergent series for the low-frequency, heavily-damped modes. As
the effects of stiffness become predominant for the higher-frequency modes,
the superposed strains should converge rapidly to a final value. Detailed
numerical calculations are needed to verify the expected increase,
turnaround, and eventual convergence of the strains with increasing numbers
of modes.
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Time Histories and Superposition

Equation 13 for the response of each mode was solved using Runge-Kutta
fourth-order integration with short time steps. Results were converted to
strains at particular locations using the exact modeshapes (Equations 18 and
19) and the strains were added up mode-by-mode to determine time-history
bending responses. Partial sums over various numbers of modes were
displayed as a function of time and inspected to determine rate of
convergence in general and the number of modes needed to approach final
values in particular cases.

Figures 2 through 5 show partial sums for time-history strains near the
base of two plates of different thicknesses when they are struck by a shock
wave with peak pressure about 7 MPa and time constant about 0.4 ms. A sum
over 8 modes is needed to obtain substantial convergence for the thicker
plate (Figure 2), with little change thereafter (Figure 3). The thinner
plate needs 20 modes (Figure 4) to arrive substantially at its final values
of strain (Figure 5).

Similar results were obtained for other locations on the plates and for
other combinations of inputs. Strains on the thicker plate converged in
fewer than 12 modes at two locations farther from the base (Figures 6 and
7). The convergence continued when the input consisted of the flat-plate
base motion followed, 0.1 ms later, by the shock wave (Figure 8 at one
location, other locations not illustrated) or the base motion from the
sphere followed by the shock wave (not illustrated).

Strains in the thinner plate from the shockwave alone had converged by
20 modes (Figures 9 and 10), as was the case when the input consisted of the
base motion from the flat plate or the sphere followed by the shock wave
(Figures 11 and 12).

*2

-.

2



-V - - -

~~~~~~~*.~~~~~~~~~~ 4 cIo-. - - -..- . --

'-go

0 oa

to 0

4. 
A 0

410

440

C

4 
0

0.0

4-' 0 0.0

4 
4 4 " 4

- A 0 P-4

- 0
-ri AMcj b

go cr4'

4 1 1

A to

23'



0

c41

"-4

-i

24-



1. 7S7 -1477 -7 17-7

Aj

o

0) G2

bo 0

0

044

25



c 4

bC

262



* -

'

to

44

w

0

ca

44
-W (

1pW

A4.1"

V4

41 41-
to

27U

I
• : . . ...- ..- .-- : . . - ... -. .. .. . • ... ... ..- ... .. ... .. .

* c.;,i- - .- -. , ' .. ,f i ..- ,', . . . . ._ . . . . ... . . _ . . .. . . . . .



- . 7

44

r-

r4
cc

b0

288



.0

co 0

q4
'-S 0 o

bAj

o

0 4.4.

A 1i

0

Ai 0

WA
Ai.

- S mm
"4b

%A

V4.

ow

29 1.



'44
0

41

11

0M

'4-

r-.

W
to Q4

W OA

*554

S en

30



4-1

.r4

0

M

4

31~



d'LA

V4

w JJ

0

Aj

0

44

44

.1.'

'J'

32~

H. JJ



-. V4

0v

4

.0

4.
p-

4

U

(UC

I bo

33~



L ..

DISCUSSI ON

The calculations show that the number of modes needed to produce
convergence of time-history strains to final values depends on the
damping. From 8 to 20 modes were needed for the examples used here. The
requirement to analyze plates for modes having high frequencies and short
wavelengths means that the plates must be represented by modal formulas
which are adequate in that range, by high-order finite elements, or by a
large number of small finite elements if strains are to be determined
properly.

Damping

Damping relative to critical is given by pcW/(mw) for the calculations
made here (plane-wave damping from the in-vacuo modes of a plate immersed in
an acoustic fluid). It ranged from 230 times critical for the first mode
(42 Hz) of a steel plate 3.3 m.-thick immersed in sea water to 1 percent of
critical for the thirtieth mode (292 kHz) of a plate 9.3 mm thick.

The numerical results showed that 8 modes were needed to converge to
nearly the final values of strain for the thicker plate, as indicated in
Figure 2, for example. The eighth mode had a frequency of 19 kHz with
damping 18 percent of critical. A corresponding approach toward convergence
for the thinner plate required 20 modes, as shown in Figure 5. There the
twentieth mode had a frequency of 45 kHz and damping 22 percent of critical.

As described earlier, the strains for the heavily-damped, low-frequency
modes begin as a divergent series. Under the influence of a shock wave or a
base motion, these modes tend to have displacements proportional to the
relative displacement between the surrounding water and the base. The
curvature of the modes, which establishes the strain at the surface of the
plates, is approximately proportional to frequency times deflection and
increases with increasing mode frequency.

Lightly-damped modes, however, tend to have oscillatory deflections
with amplitudes which are inversely proportional to the square of the
frequency. Strains from these modes decrease with increasing frequency, so
that the sum of the strains approaches a limiting value. Calculations for

•: strain need to be carried through the regime of the overdamped modes and
into the range of the lightly-damped modes before convergence occurs. For
the two thicknesses of plate considered here, this seemed to involve

"* including modes with dampings down to 20 percent or so of critical damping.
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Adequacy of Structural Representation

Thin-beam formulas, as used in the present calculations, are generally
considered adequate for beams whose thickness is less than 1/10 of the
distance between nodes. On this criterion, the frequencies and modeshapes
as calculated were inaccurate from the third mode onward for the thicker
plate, and from the eighth mode onward for the thinner plate. At the modes
producing convergence (the eighth for plates 9.3 mm thick, or the twentieth
for plates 3.3 mm thick, both plates 254 mm long), the distance between
successive nodes was less than four plate thicknesses. Timoshenko-beam
formulas would indicate lower frequencies (and larger dampings relative to
critical), but with part of the deflection resulting from shear deformation
(which would not contribute to the strain at the surface of the plate).

Another criterion compares bending waves (as used in the thin-beam
formulas) with shear waves (which are neglected). If the speed of a shear
wave in steel were 4 km/s the plates, acting as quarter-wave resonators 254
m long, would have a fundamental mode of shear vibration at 3937 Hz.
Frequencies larger than this value obtained from thin-beam formulas are
unrealistic, beginning with the fourth mode (4113 Hz) for the thicker plate
and the seventh mode (5038 Hz) for the thinner plate.

It appears that special care is needed to insure that structural
representations are adequate when stresses are to be an end result of
calculations for structures immersed in water. Finite elements need to be
small enough to delineate higher-mode vibrations or high-enough in order to
include more than one mode of vibration. The effects of shear deformation
and rotary inertia need to be included to represent the higher modes of thin
plates properly.
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Adequacy of Representation of the Fluid

The plane-wave damping used in the present calculations correctly

represents the initial resistance which an acoustic fluid offers to a

suddenly-started relative motion between the fluid and a structure. It
persists at a particular point, however, only for the time s/c which it
takes for a different pressure at a point a distance s away to be
transmitted over that distance at the speed of sound c and begin to modify
the plane-wave damping.

At the center of a plate 152 m wide, for example, pressures from the
sides will begin to arrive at 0.05 is. The assumption of plane-wave
radiation overestimates the damping after that time for an unbaffled
plate. For frequencies up to about 5 kHz, the relatively rapid equalization
of pressure on a time scale appropriate to the period of vibration allows
the modes to vibrate freely as nearly-undamped systems. The plane-wave
damping applies, however, to their initial response to the suddenly-applied
pressure from an incident shock wave or to the abrupt inertial loading from
a step acceleration of the base. Graphs displayed here illustrate responses
with plane-wave damping applied for a full 1.5 is, of which only the first
0.05 as or so is realistic. Similar considerations apply, to the presumed
doubling of the incident pressure when scattering is taken as represented by
simple reflection of a plane-wave.

The provision of proper representations for damping and scattering from
a finite element is a difficult problem, since they depend on the shape of
the element and on the influence of all the other elements in the
structure. It is complicated by the fact that, as illustrated in the
present simplified problem, damping regularly produces coupling among the
in-vacuo modes except in special cases.
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CONCLUSIONS AND RECOMMM'ATI(ONS

The conclusions presented here are based on simplified calculations for

steel plates immersed in sea water. It is believed, however, that the
recommendations are applicable to fluid-structure interactions in general.

Conclusions

1. If the in-vacuo modes of vibration of a structure would be
over damped by plane-wave acoustic damping when the structure is immersed in
an acoustic medium, the initial velocities and deflections of the structure
in response to a shock wave in the medium or a sudden motion of the supports
are controlled mainly by the damping and are less dependent on frequency or
stiffness.

2. For the damping-controlled deformations, stresses and strains in
the structure increase with increasing frequency or stiffness. Partial sums
of strains taken for overdamped modes or strains representing overdamped
deformations do not represent the true strains expected in the structure.

3. In-vacuo modes or deformations which would be lightly-damped by
. plane-wave acoustic damping, on the other hand, have initial deflections

which are controlled mainly by frequency or stiffness. Partial sums of
strains for lightly-damped modes converge rapidly to final values and
strains for lightly-damped deformations are more likely to be correct
estimates.

4. In the examples used here, partial sums of strains in thin plates
converged to final values during the initial part of the response only if
enough modes were included to bring the damping down to about 20 percent of
critical for the last mode used.

5. Structural modeling to the high frequencies needed for lightly-
damped modes may be difficult for steel structures in water.
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Recommendations

1. If stresses or strains are important to analysis of the dynamic
response of a structure immersed in an acoustic fluid, the structure must be
modeled in sufficient detail to include motions which would be only lightly-
damped for radiation damping.

2. Structural modeling should be appropriate to the frequency range
needed to reach the lightly-damped regime.

3. For example, in the case of thin steel plates struck by a plane
shock wave in sea water, from 8 to 20 in-vacuo modes were needed to obtain
convergent values for initial bending strain. Modes having plane-wave
damping down to about 20 percent of critical were included. The thin-beam
formulas which were used to calculate the modes of the plates were not
adequate for the range of modes which had to be included.
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